In vitro Toxicology

Mitochondrial Toxicity Assessment (Glu/Gal)

Background Information

- Impairment of mitochondrial function is increasingly implicated in the etiology of drug-induced toxicity. For example, mitochondrial dysfunction was found to play a role in the toxicity of troglitazone and cerivastatin which were withdrawn from the US market in 2000 and 2001 respectively.¹

- Mitochondria produce >90% of the cellular energy requirements in the form of adenosine triphosphate (ATP) via oxidative phosphorylation.

- Many cell lines developed for use in vitro are metabolically adapted for growth under hypoxic and anaerobic conditions using high glucose media and derive most of their energy from glycosis rather than mitochondrial oxidative phosphorylation (a process termed the Crabtree effect). This reduces the cells susceptibility to mitochondrial toxicants.²

- Circumventing the Crabtree effect by replacing glucose with galactose in the cell media increases the reliance of the cells on mitochondrial oxidative phosphorylation to obtain ATP. By comparing the toxic effects of different drugs in the glucose and galactose media, it is possible to detect mitochondrial impairment and identify if this is a primary effect or secondary to other cytotoxic mechanisms.²

- Cyprotex evaluates mitochondrial toxicity using HepG2 cells, U-87 MG cells or other cell lines (available on request).

¹ Dykens JA and Will Y (2007) Drug Discovery Today 12; 777-785

²

Protocol

- **Media Assessed**
 - Supplemented DMEM containing 25 mM glucose
 - Supplemented DMEM containing 10 mM galactose

- **Cell Types Available**
 - HepG2, U-87 MG, other custom cell lines

- **Test Article Concentration**
 - 0.03, 0.1, 0.3, 1, 3, 10, 30 and 100 µM (different concentrations available)

- **Final DMSO Concentration**
 - 0.5 %

- **Number of Replicates**
 - 3 replicates per concentration

- **Test Article Requirements**
 - 100 µL of 20 mM solution

- **Analysis Method**
 - MTT [yellow; 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide], determined by absorbance

- **Data Delivery**
 - IC₅₀ determination in the presence of glucose and galactose media
 - Minimum effective concentration (MEC) determination in the presence of glucose and galactose media
 - Fold change in Glu/Gal IC₅₀

To find out more contact enquiries@cyprotex.com
Drug induced mitochondrial toxicity is shown by members of important drug classes, including the thiazolidinediones, statins, fibrates, antivirals, antibiotics, and anticancer agents\(^2\).

Mitochondrial Toxicity

The Cyprotex mitochondrial toxicity assay has been validated using a number of different mitochondrial toxicants and non-mitochondrial toxicant compounds.

Figure 1

Effect of papaverine (A) and tamoxifen (B) on HepG2 cell loss when cells are grown in glucose or galactose media.

A mitochondrial toxicant is indicated by a greater than three-fold change in IC\(_{50}\) value observed in the galactose media compared to the glucose media.

Table 1

IC\(_{50}\) fold change when HepG2 cells are exposed to papaverine or tamoxifen in galactose media compared with glucose media.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Media</th>
<th>Minimum Effective Concentration (µM)</th>
<th>IC(_{50}) (µM)</th>
<th>Fold Change in IC(_{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papaverine</td>
<td>Glucose</td>
<td>4</td>
<td>15.5</td>
<td>7.91</td>
</tr>
<tr>
<td></td>
<td>Galactose</td>
<td>1</td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>Glucose</td>
<td>40</td>
<td>14.3</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Galactose</td>
<td>40</td>
<td>16.9</td>
<td></td>
</tr>
</tbody>
</table>

References

2. Marquins LD et al. (2007) Circumventing the Crabtree effect: Replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants Toxicol Sci 77(2); 539–547