In vitro Toxicology

Chronic Exposure Nephrotoxicity Assay

Background Information

- Drug-induced nephrotoxicity (DIN) is a leading cause of renal failure in the clinic; creating a major concern within drug discovery programs.

- Being a highly structured filtration network, with a rich blood flow, the kidney is often exposed to high concentrations of drugs and/or metabolites creating vulnerability to drug-induced toxicity\(^1\).

- Renal proximal tubule epithelial cells (RPTEC) are the predominant cell type in the kidney proximal tubule and one of the main sites for re-absorption and drug accumulation often resulting in tubular damage by interfering with mitochondrial function, impairing tubular transport, increasing oxidative stress or forming free radicals\(^1,2,3\).

- A combined high content screening (HCS) approach allows a measure of multiple cell health markers including glutathione content (GSH), phospholipidosis (PLD), mitochondrial mass (mito mass) and mitochondrial membrane potential (MMP) alongside cellular ATP levels in a human kidney relevant in vitro cell model in order to better predict drug induced nephrotoxicity (DIN).

Protocol

Cell Type
Renal proximal tubule epithelial cells (RPTEC)

Analysis Platform and Method
Cellomics ArrayScan\(^\circ\) (Thermo Scientific) Combined High Content Screening (HCS)

Test Article Concentrations
8 point dose response curve with top concentration based on 100x \(C_{\text{max}}\) or solubility limit

Number of Replicates
3 replicates per concentration

Test Article Requirements
150 μL of a stock solution to achieve 100x \(C_{\text{max}}\) (1000x top concentration to maintain 0.1% DMSO) or equivalent amount in solid compound.

Time Points
9 days (216 hr)

Toxicity Markers
Cell loss
Nuclear size
DNA structure
Mitochondrial mass
Mitochondrial membrane potential
Phospholipidosis
Glutathione content
Cellular ATP

Quality Controls
Negative control: 0.1% DMSO (vehicle)
Positive controls: Sertraline and L-buthionine-sulfoximine

Data Delivery
Minimum effective concentration (MEC) and AC\(_{50}\) values with dose response curves for each measured parameter.

*Other options available on request.

‘Drugs cause approximately 20 percent of community- and hospital-acquired episodes of acute renal failure. Among older adults, the incidence of drug-induced nephrotoxicity may be as high as 66 percent.’

\(^1\)Naughton CA (2008) Am Fam Physician 78(6): 743-750
Table 1
Nephrotoxicity prediction of 16 reference compounds categorised according to literature data.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Human exposure</th>
<th>Known nephrotoxin</th>
<th>Minimum effective concentration; MEC (µM)</th>
<th>Most sensitive feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)-(+) Camptothecin</td>
<td>0.083</td>
<td>Yes</td>
<td>0.003</td>
<td>Nuclear size</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>165.4</td>
<td>Yes</td>
<td>165</td>
<td>Glutathione content</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>2</td>
<td>Yes</td>
<td>0.106</td>
<td>Glutathione content</td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>11</td>
<td>Yes</td>
<td>0</td>
<td>Phospholipidosis</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>10.1</td>
<td>Yes</td>
<td>29</td>
<td>Cellular ATP level</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>13</td>
<td>Yes</td>
<td>367</td>
<td>Mitochondrial membrane potential</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>16</td>
<td>Yes</td>
<td>477</td>
<td>Mitochondrial mass</td>
</tr>
<tr>
<td>Phencicain</td>
<td>12</td>
<td>Yes</td>
<td>337</td>
<td>Mitochondrial mass</td>
</tr>
<tr>
<td>Amikacin</td>
<td>34</td>
<td>Yes</td>
<td>344</td>
<td>-</td>
</tr>
<tr>
<td>Busprone</td>
<td>0.009</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Piroxicain</td>
<td>12.79</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Flavoxate</td>
<td>1.788</td>
<td>No</td>
<td>117</td>
<td>Glutathione content</td>
</tr>
<tr>
<td>Flumazenil</td>
<td>1.21</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Levocarnitine</td>
<td>85.7</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Mecamylamine</td>
<td>0.142</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Propanthelien</td>
<td>0.44</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
</tbody>
</table>

Vehicle (0.1% DMSO)

0.04 µM (S)-(+) Camptothecin

1000 µM Tobramycin

Nuclei

GSH content

PLD

MMP

Utilising the RPTEC chronic exposure HCS assay all reference compound toxicities were correctly predicted with 100% accuracy, sensitivity and specificity within a 30x C_{max} cut off (table 1). Multi-parametric high content screening allows detection of nephrotoxicity below therapeutic levels (C_{max}) for cisplatin (MEC 0.106 µM; C_{max} 2 µM) and cyclosporin A (MEC 0.709 µM; C_{max} 11 µM), highlighting the sensitivity of the assay.

The combination of an in vitro human relevant cell model with chronic compound exposures and multi-parametric endpoint assessment presents a viable screening strategy for the accurate in vivo relevant detection of novel therapeutics that cause nephrotoxicity early in drug development.

*Plasma C_{max} values were taken from the literature.

References