In vitro Toxicology

Chronic Exposure Nephrotoxicity Assay

Background Information

- Drug-induced nephrotoxicity (DIN) is a leading cause of renal failure in the clinic, creating a major concern within drug discovery programs.

- Being a highly structured filtration network with a rich blood flow, the kidney is often exposed to high concentrations of drugs and/or metabolites creating vulnerability to drug-induced toxicity.

- Renal proximal tubule epithelial cells (RPTEC) are the predominant cell type in the kidney proximal tubule and one of the main sites for re-absorption and drug accumulation often resulting in tubular damage by interfering with mitochondrial function, impairing tubular transport, increasing oxidative stress or forming free radicals.

- A combined high content screening (HCS) approach allows a measure of multiple cell health markers including glutathione content (GSH), phospholipidosis (PLD), mitochondrial mass (mito mass) and mitochondrial membrane potential (MMP) alongside cellular ATP levels in a human kidney relevant in vitro cell model in order to better predict drug induced nephrotoxicity (DIN).

Protocol

Cell Type
Renal proximal tubule epithelial cells (RPTEC)

Analysis Platform and Method
Cellomics ArrayScan® (Thermo Scientific)
Combined High Content Screening (HCS)

Test Article Concentrations
8 point dose response curve with top concentration based on 100x C_{max} or solubility limit

Number of Replicates
3 replicates per concentration

Test Article Requirements
150 μL of a stock solution to achieve 100x C_{max} (1000x top concentration to maintain 0.1% DMSO) or equivalent amount in solid compound.

Time Points
9 days (216 hr)

Toxicity Markers
- Cell loss
- Nuclear size
- DNA structure
- Mitochondrial mass
- Mitochondrial membrane potential
- Phospholipidosis
- Glutathione content
- Cellular ATP

Quality Controls
- Negative control: 0.1% DMSO (vehicle)
- Positive controls: Sertraline and L-buthionine-sulfoximine

Data Delivery
Minimum effective concentration (MEC) and AC₅₀ values with dose response curves for each measured parameter.

*Other options available on request.

To find out more contact enquiries@cyprotex.com
Table 1

Nephrotoxicity prediction of 16 reference compounds categorised according to literature data.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Human exposure</th>
<th>Known nephrotoxin</th>
<th>Minimum effective concentration; MEC (µM)</th>
<th>Most sensitive feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)-(+) - Camptothecin</td>
<td>0.083</td>
<td>Yes</td>
<td>0.003</td>
<td>Nuclear size</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>165.4</td>
<td>Yes</td>
<td>182</td>
<td>Glutathione content</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>2</td>
<td>Yes</td>
<td>0.106</td>
<td>Glutathione content</td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>11</td>
<td>Yes</td>
<td>2.104</td>
<td>Phospholipidosis</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>10.1</td>
<td>Yes</td>
<td>29</td>
<td>Cellular ATP level</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>13</td>
<td>Yes</td>
<td>367</td>
<td>Mitochondrial membrane potential</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>16</td>
<td>Yes</td>
<td>477</td>
<td>Mitochondrial mass</td>
</tr>
<tr>
<td>Phenacetin</td>
<td>12</td>
<td>Yes</td>
<td>337</td>
<td>Mitochondrial mass</td>
</tr>
<tr>
<td>Amikacin</td>
<td>34</td>
<td>Yes</td>
<td>344</td>
<td>-</td>
</tr>
<tr>
<td>Buspirone</td>
<td>0.009</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Piroxicam</td>
<td>12.79</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Flavoxate</td>
<td>1.788</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Flumarin</td>
<td>1.21</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Levocarnitine</td>
<td>85.7</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Mecamylamine</td>
<td>0.142</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
<tr>
<td>Piroxanthen</td>
<td>0.44</td>
<td>No</td>
<td>No response</td>
<td>-</td>
</tr>
</tbody>
</table>

*Plasma C_{max} values were taken from the literature.

Figure 1

Representative high content screening (HCS) images of (a) (S)-(+) -camptothecin and (b) tobramycin in RPTECs labelled with Syto11 (blue) to detect DNA structure, monochlorobimane (mBCl) (green) to detect GSH content, LipidTOX™ Red (red) to detect phospholipidosis (PLD) and MitoTracker® Deep Red (yellow) to detect mitochondrial membrane potential (MMP).

Figure 2

Graphical representation of (a) cellular ATP content and GSH content response following 216 hr of cisplatin exposure and (b) cellular ATP content and phospholipidosis response following 216 hr of cyclosporin A exposure in RPTECs.

RPTECs were exposed to test compound for 216 hours, re-dosing occurred on 3 occasions over this period. At 216 hours the cell model was analysed using a Cellomics ArrayScan® (Thermo Scientific) following incorporation of fluorescent dyes for cell health parameters including DNA structure (Syto11), GSH content (mBCl), phospholipidosis (HCS LipidTOX™ Red), mitochondrial dysfunction (MitoTracker® Deep Red). Subsequently cellular ATP content (CellTiter-Glo®, Promega) was determined.

References

