Request a Quote
in vitro toxicology

Mitochondrial Toxicity

Mitochondria are known as the powerhouses of the cell and have an important role in energy production, as well as involvement in apoptosis, calcium signalling, regulation of cellular metabolism and proliferation of haem and steroids.

Mitochondria have a distinct structure with an outer and inner membrane. The inner membrane is highly convoluted to form folds known as cristae. Most of the cell’s supply of ATP, which is its primary energy source, is formed on these cristae. Five complexes (complex I, II, III, IV and V) are located in the cristae and these complexes are involved in oxidative phosphorylation and ATP production.

The number of mitochondria in a cell varies depending on tissue type and its function. For example, due to elevated energy requirements, some organs are highly dependent on mitochondria, for example, skeletal muscle, the heart, the brain and the liver to name a few.

The mitochondria are a common target for drug-induced toxicity. Cyprotex offer a number of different methods for assessing in vitro mitochondrial toxicity. These include:

Functional Mitochondrial Toxicity Assay (Seahorse)

The functional mitochondrial toxicity assay detects effects of compounds on oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using the Seahorse to assess cellular metabolism and mitochondrial function. A mitochondrial stress test is used to understand cellular bioenergetics and the mechanism of mitochondrial toxicity.

Find out more about our functional mitochondrial toxicity assay

Mitochondrial Respiratory Complex Assay using Permeabilised Cells (Seahorse)

Permeabilisation of the cell membrane leaves the mitochondrial membrane intact which allows study of mitochondrial function without the need to isolate mitochondria. By using complex-specific substrates and inhibitors, it allows the identification of the individual complexes which are involved in mitochondrial toxicity.

Find out more about our mitochondrial respiratory complex assay

Mitochondrial Biogenesis Assay

Cyprotex detects mitochondrial biogenesis using high content imaging to determine the ratio of COX-1 (mtDNA-encoded protein) to SDH-A (nDNA-encoded protein).

Find out more about our mitochondrial biogenesis assay

Mitochondrial Glu/Gal Assay

Many cell lines developed for in vitro use are metabolically adapted for growth under hypoxic and anaerobic conditions in high glucose media and derive most of their energy from glycolysis rather than mitochondrial oxidative phosphorylation – a process known as the Crabtree effect. Under these conditions, mitochondrial toxicants have reduced susceptibility. By replacing glucose with galactose in the cell media, it circumvents the Crabtree effect, which increases the reliance of the cells on mitochondrial oxidative phosphorylation to obtain ATP. By investigating the toxic effects of different drugs in the glucose and galactose media, the Glu/Gal assay is an ideal screening assay to detect effects on mitochondrial function and identify if this is a primary effect or secondary to other cytotoxic mechanisms.

Find out more about our mitochondrial Glu/Gal assay

HCS Mitochondrial Toxicity Assay

Using high content imaging, mitochondrial mass and mitochondrial membrane potential can be detected using specific cellular dyes.

Find out more about our HCS mitochondrial assay

Mitochondrial Toxicity Services
functional mitochondrial toxicity (Seahorse)
mitochondrial respiratory complex assay (using permeabilised cells)
mitochondrial biogenesis
mitochondrial Glu/Gal assay
HCS mitochondrial toxicity
Get a Quote
ADME Guide DDI Guide TOX Guide
Close
Contact us to discuss your ADME Tox issues or request a quote

Telephone:
Europe: +44 (0)1625 505100
North America (East Coast): +1-888-297-7683

or fill out the form below:

Close
Close

Download file

Close